Data Mining - Einführung in Data Mining

 

Hinweis: 

 

Termine

TagZeitRhythmusZeitraumRaumLehrpersonBemerkungMax. Teilnehmer/-innen
Vorlesung (V) - Termine:
Mo. 15:00 bis 17:00 wöchentlich 04.04.2022 bis
04.07.2022
G40B-238 (100 Pl.) Spiliopoulou   80
Übung (Ü) - Termine: Gruppe 1
Mi.13:00 bis 15:00wöchentlich06.04.2022 bis
06.07.2022
G22A-119 (24 Pl.) Beyer  30
Übung (Ü) - Termine: Gruppe 2
Di.11:00 bis 13:00wöchentlich05.04.2022 bis
05.07.2022
G29-K058 (30 Pl.) Schleicher  30
Übung (Ü) - Termine: Gruppe 3
Fr.17:00 bis 19:00wöchentlich08.04.2022 bis
08.07.2022
G22A-218 (40 Pl.) TUTOR-DM4BA

<p>Übung findet NICHT statt!</p>

30

Übersicht (from LSF)

Lerninhalte

Data Mining liefert den Werkzeugkasten, auf dem Empfehlungssysteme, Kampagnenmanagementsysteme oder Entscheidungsunterstützungssysteme ihre Lösungen bauen.

Die Systeme, die wir in einer Wirtschaftsinformatik-Vorlesung wie ITO besprechen, sammeln Daten und bearbeiten Daten. Sie liefern dem Entscheidungsträger Berichte und Statistiken, und vor allem Modelle, die aus den Daten abgeleitet wurden. 

 

  • Ein Entscheidungsträger bestimmt unter anderem, welche Produkte den Internet-Kunden angeboten werden sollen und zu welchen Konditionen.
  • Er bestimmt, unter welchen Bedingungen einem Kunden ein Produkt empfohlen wird bzw. ob der Kunde Werbung bekommt und in welcher Form.
  • "Er" kann ein Mensch sein oder ein intelligenter Dienst – ein Teil von einer Empfehlungsmaschine.

 

Solche Bestimmungen basieren auf Modelle, die die Kundeninteressen, Präferenzen, Preissensitivität usw beschreiben, ihr Verhalten in jedem Verkaufskanal und ihre Ähnlichkeit zu anderen Kunden. Diese Modellewerden genutzt, um das geeigneteste Produkt oder einen passenden Dienst einem Kunden anzubieten.

 

In der Bachelor-Vorlesung "Data Mining" besprechen wir Methoden zur Ableitung von Modellen aus Daten. Wir besprechen Methoden zur 

 

  • Klassifikation (Beispielanwendungen: Spam-Erkennung, Bonitätsprüfung)‏
  • Clustering (Beispielanwendungen: Ableitung von Kundenprofilen, Erkennung von Ausnahmesituationen)‏
  • Assoziationsregeln (Beispielanwendungen: Warenkorbanalyse für Cross/Up-Selling, Empfehlungssysteme)

 

Kurzkommentar

 Bitte nutzen Sie die LSF-Belegungsfunktion.

 

Literatur

Pan-Ning Tan, M. Steinbach, Vipin Kumar.
 Introduction to Data Mining. 2004

Auswahl von wiss. Artikeln, Angaben zum Semesterbeginn

Bemerkung

 

 

Voraussetzungen

Keine inhaltlichen Voraussetzungen.

Leistungsnachweis

Voraussetzung für die Teilnahme an die Abschlussprüfung ist die erfolgreiche Durchführung von Vorleistungen im Rahmen einesVotierungsverfahrens.Angaben zu den Vorleistungen, darunter Anzahl und Termine der Testate, Untergrenze zum Bestehen eines Testats und Anzahl der zu bestehenden Testate im Rahmen des Votierungsverfahrens werden zum Semesterbeginn angekündigt.

Zielgruppe

WPF CV;B ab 4

WPF CV;i ab 4

WPF CSE;B ab 4

WPF DKE;M 1-3

WPF IF;i ab 4

WPF IF;B ab 4

WPF INGIF;i ab 4

WPF WIF;i ab 4

WPF WIF;B ab 4

WPF Statistik; M 1-3

Beschreibung Data Mining - Einführung in Data Mining

 

 

Last Modification: 12.04.2022 - Contact Person: