Human-Learner-Interaction
Termine
Tag | Zeit | Rhythmus | Zeitraum | Raum | Lehrperson | Bemerkung | Max. Teilnehmer/-innen |
---|---|---|---|---|---|---|---|
Vorlesung (V) - Termine: | |||||||
Do. | 09:00 bis 19:00 | Einzeltermin | am 05.04.2018 | G22A-004 (20 Plätze) | |||
Fr. | 09:00 bis 19:00 | Einzeltermin | am 06.04.2018 | G22A-004 (20 Plätze) | |||
Di. | 17:00 bis 19:00 | wöchentlich |
10.04.2018 bis 19.06.2018 | Krempl |
Consultation Time (individual appointments per group will be scheduled accordingly) | ||
Seminar/Übung (S/Ü) - Termine: | |||||||
Di. | 15:00 bis 17:00 s.t. | wöchentlich | Krempl | Consultation time (on individual appointment) |
Übersicht (from LSF)
Lerninhalte | Aims & Competences:
|
---|---|
Kurzkommentar | <p style="margin-bottom: 0cm; line-height: 100%;">This <strong>block course (Deutsch: geblockte Lehrveranstaltung)</strong> is a combined lecture, seminar and project. Following a block lecture at the beginning of the term, the course is centred around work in small groups on projects that address a topic of <strong>current research in machine learning/data science</strong>. In 2018, the projects will be within the topic of <strong>active transfer learning</strong>, further details will be announced in the first lectures. Knowledge of fundamental concepts in data mining/machine learning is expected as prerequisite.</p><p><strong> Mandatory course registration: see "enrollment/Belegfunktion" for the accompanying Seminar/Exercise in LSF. The binding registration and topic/team assignment will be done right after the c<strong>ompulsatory exercises (tests) at the end of the lecture <strong><strong>block.</strong></strong></strong><br /></strong></p> |
Literatur | Selected research-oriented topics, for example from: Active Learning: Burr Settles. Active Learning. Morgan and Claypool Publishers, 2012. Semi-Supervised Learning: Steve Abney. Semisupervised Learning for Computational Linguistics. Chapman & Hall/CRC Computer Science & Data Analysis Series, 2007. Reinforcement Learning Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998. Recommender Systems: Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Hrg.). Recommender Systems Handbook. Springer 2010. |
Voraussetzungen | Basic knowledge of data mining oder machine learning is highly recommended. Mandatory course registration: see "enrollment/Belegfunktion" for the accompanying Seminar/Exercise in LSF. |
Zielgruppe |
|
Course Material
- Project Topics and General Guidelines
- Introduction to Statistical Classification
- Scientific Paper Writing
- Introduction to Octave/MATLAB Programming