Recommenders
News:
07-10-2020: We are planning an electronic lecture due to the COVID-19 situation. The lecture and exercise for master students will be video-recorded and made available for download. Questions can be answered via mail or a chat function. The exercise for bachelor students will be synchrone Onlineveranstaltung.
Update [2020-10-19]: Further information on the synchrone Onlineveranstaltung for the bachelor students are available on Moodle.
A registration in the LSF to the groups is obligatory (hygiene concept) and simplifies the communication outside of Moodle.
Eine Registrierung im LSF zu den Gruppen ist verpflichtend (Hygiene-Konzept) und vereinfacht die Kommunikation außerhab von Moodle.
All course materials, announcements, information and links for all students will be provided on Moodle
Timetable
Day | Time | Frequency | Period | Room | Lecturer | Remarks | Max. participants |
---|---|---|---|---|---|---|---|
Vorlesung(V) - Lecture - Dates/Times/Location: | |||||||
Mon. | bis | weekly | Spiliopoulou | 120 | |||
Übung (Ü) - Exercise - Dates/Times/Location: Group 2 | |||||||
Tue. | bis | weekly | Jamaludeen | This exercise will be in English | 120 | ||
Übung (Ü) - Exercise - Dates/Times/Location: Group 3 | |||||||
Tue. | bis | weekly | Schleicher | Diese Übung ist deutschsprachig. Synchron!!! Die Übung findet ab (und einschließlich) dem 03.11.2020 Dienstags 9:15 Uhr in Zoom statt. | 40 | ||
Übung (Ü) - Exercise - Dates/Times/Location: Group 4 | |||||||
Wed. | bis | weekly | Tutor | not approved yet | 40 |
Overview (from LSF)
Learning Content | Outline of the course Part I - Basics of recommenders:
Part II: Neighbourhood-based learning methods
Part III: Exploiting text content
Part IV: The surroundings of a recommender
Part V: Study of scientific papers – compulsory for the 6 ECTS version, optional for the 5 ECTS version |
---|---|
Comments | Recommended background All students: Having attended data mining or machine learning or an AI course is of advantage, although you may catch up with home reading. You must refresh your secondary school background in statistics.
|
Description | Goal of this course is to make you familiar with recommenders. You will learn what requirements are placed to a recommender by the business operating it and by the users interacting with it, and you will become proficient in methods used to meet these requirements. A recommender has a front-end service responsible for the interaction, and a back-end machine learning core that derives the recommendations to be presented to the users and learns from the users' behavior. Most part of the course is on the back-end: you will become familiar with basic and advanced methods that model the recommendation task as an optimization problem and deliver solutions for it. A recommender learns from information on the items to be recommended and the users to be served. You will see methods that extract such information from data – mainly opinionated texts. New exam form: Elektronische schriftliche Prüfung (unbeaufsichtigt), i.e. digital unsupervised open-book exam. The course RECSYS can be examined for 5 ECTS or for 6 ECTS. |
Literature | Book of the course:
Core papers on the underpinnings of specific course topics:
Further papers are cited in the materials of the course. The additional materials for Part V will be announced during the course. |
Remarks | ExamNew exam form: Elektronische schriftliche Prüfung (unbeaufsichtigt), i.e. digital unsupervised open-book exam. The course RECSYS can be examined for 5 ECTS or for 6 ECTS. RECSYS-5ectsTo acquire the 5 ECTS, enroll for the 5-ECTS-exam. RECSYS-6ectsFor the 6th credit point, you make an additional assignment which involves homework. There are two options for this assignment:
For the 6th credit point, Option DEFAULT is assumed for all students who did not actively select Option CHOICE, including those that started with the CHOICE assignment but did not finish it. Examination modalitiesThe RECSYS exam is oral by default. Depending on the number of students attending the course, it may be turned to a written exam (as usual for many FIN courses).
|
Prerequisites | None. |
Certificates | New exam form: Elektronische schriftliche Prüfung (unbeaufsichtigt), i.e. digital unsupervised open-book exam |
Target Group | RECSYS is for bachelor students in high semesters and for master students, as follows:
The exercise class for the bachelor degrees is on German, for the master degrees on English. Under Exam you find additional information on how you acquire the 5 ECTS, resp. 6 ECTS. |
Description | Recommenders |
Lecture:
Lecture + Exercise: Moodle